1.200.00

S = 0.78	Extinction correction: none
6093 reflections	Scattering factors from
484 parameters	International Tables for
H atoms treated by a	Crystallography (Vol. C)
mixture of independent	Absolute structure:
and constrained refinement	Flack (1983)
	Flack parameter = $-0.06(6)$

Table 1. Selected geometric parameters (Å, °)

.

CIA-FIA	1.305 (5)	CIOA = CI/A	1.508 (0)
C1 <i>B</i> —F1 <i>B</i>	1.366 (5)	1.366 (5) C16A—O1A	
C4AC7A	1.518(6)	C16B-C17B	1.383 (6)
C4BC7B	1.518(5)	C16B-01B	1.392 (5)
C7A—C11A	1.537 (5)	C17A-02A	1.375 (5)
C7AC8A	1.541 (5)	C17B-02B	1.370 (4)
C7BC8B	1.538 (5)	C19A-01A	1.417 (6)
C7BC11B	1.539(5)	C19A—O2A	1.445 (5)
C8AC9A	1.517 (6)	C19B—O2B	1.418 (5)
C8BC9B	1.516(5)	C19B—O1B	1.452 (5)
C9A—N1A	1.496 (5)	Cl1+++H1O4 ¹	2.35 (5)
C9B—N1B	1.490(5)	Cl2···H2N2	1.94 (5)
C10A-N1A	1.475 (5)	CI2···H1N1	2.18 (4)
C10AC11A	1.523 (6)	NIA—HINI	().89 (4)
C10B-N1B	1.483 (5)	N1A—H2N1	1.12 (5)
C10B—C11B	1.542 (5)	N1B-H1N2	0.84 (4)
C11A—C12A	1.524 (5)	N1B—H2N2	1.22 (5)
C11B—C12B	1.501 (5)	O4-H1O4	().79 (5)
C12AO3A	1.428 (4)	O4—-H2O4	().99 (7)
C12BO3B	1.428 (4)	04 · · · H2N1	1.69 (5)
C13AO3A	1.381 (4)	04 · · · N1A	2.772 (6)
C13B—O3B	1.371 (4)		
C4AC11A	114.5 (4)	C16A—C17A—O2A	110.0 (4)
C4A—C7A—C8A	111.3 (3)	C18A—C17A—O2A	127.1 (4)
С4ВС7ВС8В	112.5 (3)	O2BC17BC18B	128.3 (4)
C4B—C7B—C11B	109.7 (3)	O2B-C17B-C16B	109.9 (3)
03A-C12A-C11A	105.8 (3)	OIA-C19A-O2A	107.2 (4)
O3B-C12B-C11B	108.7 (3)	O2BC19B-O1B	107.0(3)
O3A-C13A-C14A	115.7 (4)	H1N1N1AH2N1	112 (4)
O3A-C13A-C18A	122.8 (4)	H1N2—N1 <i>B</i> —H2N2	114 (4)
O3B-C13B-C14B	123.3 (4)	H1O4O4H2O4	94 (5)
O3B-C13B-C18B	115.2 (4)	NIA—HINI····Cl2	174 (4)
C15A—C16A—O1A	128.4 (4)	N1A-H2N1···O4	159 (4)
C17A—C16A—OIA	109.7 (4)	N1 <i>B</i> —H2N2···Cl2	152 (3)
C15B-C16B-O1B	128.7 (4)	O4H1O4 · · ·Cl1"	164 (4)
C17B—C16B—O1B	109.2 (4)	O4H2O4C11	143 (6)
Symmetry codes: (i)	$1-x, y=\frac{1}{2},$	$1 - z;$ (ii) $1 - x, \frac{1}{2} + y,$	1 - z.

The positional and isotropic displacement parameters of the H atoms on the piperidinium N atoms and on the water molecule were refined. Other H atoms were placed at calculated positions and were refined with a riding model. All non-H atoms were refined anisotropically.

Data collection: SMART (Bruker, 1997). Cell refinement: SMART. Data reduction: SAINT-Plus (Bruker, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXTL/PC (Sheldrick, 1997). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC.

I thank Schein Pharmaceutical, Danbury, Connecticut, USA, for the sample of the title compound and Christopher Pernin and Paul Jene for assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1162). Services for accessing these data are described at the back of the journal.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

References

- Barnes, R. D., Wood-Kaczmar, M. W., Curzons, A. D., Lynch, I. R., Richardson, J. E. & Buxton, P. C. (1988). US Patent No. 4 721 723.
- Bruker (1997). SMART (Version 5.101) and SAINT-Plus (Version 5.101). Data Collection and Processing Software for the SMART System. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Buxton, P. C., Lynch, I. R. & Roe, J. M. (1988). Int. J. Pharm. 42, 135-143.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jacewicz, V. W. & Ward, N. (1996). Can. Patent Appl. 2 168 829.
- Rocca, P., Fonzon, V., Scotta, M., Zanalda, E. & Ravizza, L. (1997). Acta Psychiatr. Scand. 95, 444–450.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXTL/PC. Version 5.101. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 434-436

Fromm's methylphenyldithiodimethylketuret

John S. Davidson," Steven J. Rettig^b and James Trotter^b

^aCrosslaw, Ballplay Road, Moffat. Dumfriesshire DG10 9JU, Scotland, and ^bDepartment of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1. E-mail: jtrt@xray4.chem.ubc.ca

(Received 9 July 1998; accepted 15 October 1998)

Abstract

The 'keturet' obtained by reacting 1-methyl-1-phenyldithiobiuret with acetone is shown to be 6,6-dimethyl-2methylanilino-5,6-dihydro-4*H*-1,3,5-thiadiazine-4-thione, $C_{12}H_{15}N_3S_2$. The molecule contains a six-membered thiadiazine ring with a distorted half-chair conformation, rather than a previously proposed four-membered ring structure. Molecular dimensions are normal, and the molecules (two per asymmetric unit) are linked by two $N-H\cdots S$ hydrogen bonds, one fairly strong $[H\cdots S$ 2.39 (3) Å] and one weaker $[H\cdots S 2.65$ (4) Å].

Comment

Condensation of 1-aryldithiobiurets with ketones, under the influence of dry hydrogen chloride, gives compounds called 'keturets' (Fromm, 1893), some of which can be formulated as hexahydrotriazine derivatives (Fairfull & Peak, 1955). Reaction of 1-methyl-1-phenyldithiobiuret, (I), with acetone gives a keturet which cannot be a hexahydrotriazine (since the disubstitution on N1

....

of the dithiobiuret blocks its formation). The compound was originally formulated as a diazacyclobutane, (II) (Fromm & Junius, 1895), but Fairfull & Peak (1955) point out that the structure has not been established conclusively, and that alternative structures, 'even' (III), might be postulated; compounds with such a structure have been synthesized, and characterized by spectroscopic methods (Goerdeler & Lüdke, 1970; Kristian *et al.*, 1973). To solve this long-standing problem, the structure of the condensation product of (I) and acetone has now been determined by X-ray methods, and proves to be (III).

There are two molecules per asymmetric unit (Fig. 1), with structures which are similar, but which differ in the details of their conformation (the conformations of the two independent molecules shown in Fig. 1 are mirror images, but the mirror-image conformation of each molecule is also present in the $P\bar{1}$ unit cell). The two independent molecules are related by a very rough pseudo-inversion center near $(\frac{1}{2}, \frac{1}{4}, 0.21)$; the positions of the pseudo-related atoms differ by about 0.75 Å for S and by more than 2 Å for some of the outer atoms of the molecules, and there are very significant differences in the strengths of the two (pseudo-related) hydrogen bonds (see below). The molecule contains a six-membered thiadiazine ring [(III) and Fig. 1]. The C=N double bond (C2=N2 and C14=N5) constrains the S-C=N-C(S) grouping to be nearly planar [torsion angles 0.7 (5) and $-6.8(5)^{\circ}$ in the two molecules; maximum displacements from fouratom planes 0.004(3) and 0.032(3)Å]. The other two atoms of the ring are displaced from this plane in the same direction, the C atom [0.874(3) and 0.967(3) Å] by considerably more than the N(H) atom [0.293 (2) and 0.335(2) Å]; the conformation may be described as a distorted half-chair. Molecular dimensions are close to normal, with the C2=N2 [1.307(4) Å] and C14=N5 [1.307 (4) Å] distances indicating double bonds.

Fig. 1. Views of the two independent molecules of (III), with 50% probability displacement ellipsoids.

The molecules are linked by two N—H···S hydrogen bonds (Table 2); one is fairly strong [N1H····S4 2.39 (3) Å], and the other much weaker [N4H···S2 2.65 (4) Å]. There are also a few possibly significant C—H···S intermolecular interactions. The very different strengths of the two N—H···S bonds appear to cause some minor differences in related bond lengths between the two independent molecules (Table 1). Atom N1, which is the donor in the stronger hydrogen bond, presumably has a higher partial negative charge than N4, and this results in more extensive electron delocalization over the N1—C1=S2 system, relative to N4— C13=S4. Thus, N1—C1 is shortened to 1.324 (4) Å [N4—C13 1.350 (4) Å], and S2=C1 is lengthened to 1.711 (3) Å [S4=C13 1.689 (3) Å].

Experimental

The 'keturet' was prepared from 1-methyl-1-phenyldithiobiuret and acetone, and crystallized from ethanol, using the procedure previously described by Fromm & Junius (1895) and Fairfull & Peak (1955) (yield 69%, m.p. 424-425 K).

Crystal data

C12H15N3S2 Mo $K\alpha$ radiation $M_r = 265.39$ $\lambda = 0.71069 \text{ Å}$ Triclinic Cell parameters from 5212 Ρī reflections a = 9.871(2) Å $\theta = 2 - 30^{\circ}$ $\mu = 0.385 \text{ mm}^{-1}$ b = 11.044(2) Å c = 13.117(3) Å T = 180 K $\alpha = 87.403 (8)^{\circ}$ Plate $\beta = 89.625 (4)^{\circ}$ $0.35 \times 0.20 \times 0.05$ mm $\gamma = 67.3872(11)^{\circ}$ Colorless V = 1318.6 (4) Å³ Z = 4 $D_{\rm r} = 1.337 {\rm Mg m}^{-3}$ D_m not measured

Data collection

Rigaku/ADSC CCD diffrac-	5927 independent reflections
tometer	2257 reflections with
CCD scans	$I > 3\sigma(I)$
Absorption correction:	$R_{\rm int} = 0.050$
multi-scan (d*TREK;	$\theta_{\rm max} = 30.07^{\circ}$
Molecular Structure	$h = -11 \rightarrow 13$
Corporation, 1997a)	$k = -11 \rightarrow 15$
$T_{\rm min} = 0.85, T_{\rm max} = 0.98$	$l = -15 \rightarrow 18$
12 370 measured reflections	

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 1.00 {\rm e} {\rm \AA}^3 (0.8 {\rm \AA})$
R(F) = 0.040	from H10, bonded to C6)
$wR(F^2) = 0.077$	$\Delta \rho_{\rm min} = -0.90 { m e}{ m \AA}^3$ (0.4 Å
S = 1.020	from H8, bonded to C6)
5927 reflections	Extinction correction: none
315 parameters	Scattering factors from
H atoms: see below	International Tables for
$w = 1/[\sigma^2(F_o^2)]$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = 0.005$	

Table 1. Selected geometric parameters (Å, °)

\$1—C2	1.774 (3)	\$3-C14	1.775 (3)
S1—C3	1.822 (4)	S3-C15	1.842 (3)
S2—C1	1.711 (3)	S4—C13	1.689 (3)
N1C1	1.324 (4)	N4-C13	1.350 (4)
N2—C2	1.307 (4)	N5—C14	1.307 (4)
C2-S1-C3	96.7 (2)	C14-S3-C15	95.7 (2)

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	<i>D</i> —H	$\mathbf{H} \cdots \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
N1—H1···S4'	1.02 (3)	2.39 (3)	3.353 (3)	157 (2)
N4—H16· · ·S2"	0.96 (3)	2.65 (4)	3.522 (3)	152 (3)
Symmetry codes: (i) $1 + x, y - 1$,	z; (ii) $x - 1$, 1 + v, z.	

The U_{ij} values are quite small (low-temperature data), but physically very reasonable, with atoms near the centers of the molecules having the lowest displacement parameters and

those on the periphery the highest. The highest correlation

coefficient in the refinement is 0.51, for U_{22} and U_{12} of atom C12 (see *Comment* for a discussion of the pseudosymmetry). The higher than usual value of R_{int} resulted from lower than usual crystal quality. All parameters were refined for the two H atoms bonded to N; the other H atoms were placed on calculated sites, with C—H = 0.98 Å and U(H) equal to 1.2 times U of the C atom to which they were bonded. Methyl group H atoms were placed from a difference synthesis.

Data collection: d*TREK (Molecular Structure Corporation, 1997a). Cell refinement: d*TREK. Data reduction: d*TREK. Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1997b). Software used to prepare material for publication: TEXSAN.

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1159). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, M., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Fairfull, A. E. S. & Peak, D. A. (1955). J. Chem. Soc. pp. 803-808. Fromm, E. (1893). Annalen, 275, 20-49.
- Fromm, E. & Junius, E. (1895). Ber. Disch Chem. Ges. 28, 1102-1113.
- Goerdeler, J. & Lüdke, H. (1970). Chem. Ber. 103, 3393-3406.
- Kristian, P., Koščík, D. & Bernát, J. (1973). Chem. Zvesti, 27, 280– 285.
- Molecular Structure Corporation (1997a). d*TREK. Area Detector Software. Version 4.4. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1997b). TEXSAN. Single Crystal Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1999). C55, 436-439

Two dioxane derivatives of anthraquinone

RICHARD C. CAMBIE, RACHEL M. LORIMER, CLIFTON E. F. RICKARD AND P. STEWART RUTLEDGE

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand. E-mail: c.rickard@auckland.ac.nz

(Received 17 September 1998; accepted 6 November 1998)

Abstract

The structures of 1-methoxy-4-(2-methylprop-2-enyloxy)-2-[(2R,6R)-4,4,6-trimethyl-1,3-dioxan-2-yl]anthraquinone, C₂₆H₂₈O₆, and 4-hydroxy-3-(2-methylprop-2-